Thermolysis of Oxazolin-5-ones, 12¹⁾

Formation of a Cage Compound by Thermolysis of 2-(4-Chlorophenyl)-2-(3,3-dimethylallyl)-4-phenyl-5(2H)-oxazolone

János Fischer**, Ede Márványos*, László Párkányi^b, Alajos Kálmán^b, and Wolfgang Steglich^c

Gedeon Richter Ltd., Budapest^a, c/o MTA KKKI, Pusztaszeri út 59, H-1025 Budapest

Central Research Institute for Chemistry, Budapest^b, MTA KKKI, Pusztaszeri út 59, H-1025 Budapest

Institut für Organische Chemie und Biochemie der Universität Bonn^e, Gerhard-Domagk-Straße 1, D-5300 Bonn 1

Received April 28, 1988

During thermolysis of title compound 1, the unusual cage compound 4 is formed (along with 2,3-dihydropyridine 3); the structure of 4 was determined by X-ray structure analysis. The formation of 4 can be explained by dimerization of the intermediates 2 and 3.

Thermolysis of 2-(4-chlorophenyl)-2-(3,3-dimethylallyl)-4-phenyl-5(2*H*)-oxazolone (1) in the presence of a strong base (e.g. 1,5diazabicyclo[5.4.0]undec-5-ene) as proton scavenger affords 3-(4chlorophenyl)-6,6-dimethyl-1-phenyl-2-azabicyclo[3.1.0]hex-2-ene (2) as sole product in 80% yield²⁾. 2 is formed by means of an intramolecular 1,1-cycloaddition from an intermediary nitrilylide^{2,3)}.

When the reaction is carried out in melt or in solution without the addition of base, the formation of an insoluble compound **4** is observed in 23% yield. The main product is 6-(4-chlorophenyl)-2,3-dihydro-3,3-dimethyl-2-phenyl-pyridine (**3**), which had been obtained before on treatment of azabicyclohexene **2** with acids² (Scheme 1).

Scheme 1

The high-resolution mass spectrum of 4 gave a molecular composition of $C_{38}H_{36}N_2Cl_2$ which points to a dimerization product of 2 or 3. Because the information obtained from the NMR spectra was insufficient to elucidate the structure of the dimer, this problem was solved by means of a single-crystal X-ray analysis.

As shown by Fig. 1, computed from the final atomic coordinates listed in Table 1, the structure of 4 incorporates a piperidine and a tetrahydropyridine ring, which are connected by three bonds thus forming a cage molecule. The flaps of two envelope-shaped and *cis*-

fused five-membered rings [the dihedral angle of their best planes is $68.0(1)^{\circ}$] are cross-linked thus closing two additional six-membered rings: a cyclohexane and a piperidine ring, which both assume chair conformations. The cyclohexane ring bears a tetrahydropyridine ring in 1,3-diaxial position. This fifth ring is of half-chair conformation due to the localized C=N bond [126.9(5) pm]. The phenyl substituent of this ring has a *pseudo-equatorial* orientation. The two 4-chlorophenyl moieties are bound to the cyclohexane ring *cis-equatorially*. The best planes of these phenyl rings make a dihedral angle of $65.3(1)^{\circ}$. The fourth phenyl substituent is linked to the *cis*-junction of the five-membered rings. It assumes a *pseudoequatorial* position relative to the piperidine ring.

Fig. 1. Perspective view of the molecule **4** and numbering of atoms belonging to the cage skeleton (the hydrogen atoms are deliberately omitted)

The formation of 4 can be explained by reaction of the protonated dihydropyridine 3 with azabicyclohexene 2, which yields a formal $[2\sigma + 2\pi]$ -cycloadduct⁴. The third bond between the two tetra-hydropyridine rings may then be formed by intramolecular addition of a 2-azaallyl anion to the imino group present in the other ring. Certainly, other pathways for the formation of 4 can be envisioned, and the detailed mechanism awaits further investigations.

Table 1. Final fractional coordinates and temperature parameters of 4 with their e.s.d.'s in parentheses $[B_{eq} = 4/3 \text{ of the trace } (BG)]$ where G is the metric tensor]

Atom	x/a	у/Ъ	z/c	8(eq)
	0. (0011(7)	1 10204/5	A 10012(E)	2 52(4)
	8 70429(4)	1.19388(3)	0.18913(3)	3.32(0)
N(2)	9 7144(1)	0.00777(8)	9 2542(1)	2 4(1)
N(7)	0 3425(1)	A 6398(1)	9 3395(1)	2 2(1)
	0.5928(2)	0.6834(1)	9 3338(1)	2 2 (2)
C(2a)	0.6446(2)	0.6902(1)	0.1563(1)	2.4(2)
C(3)	0.6113(2)	0.5812(1)	8.1784(1)	2.7(2)
0(4)	0.4723(2)	0.6026(1)	8.2461(1)	2.5(2)
C(4a)	0.3748(2)	0.7271(1)	0.1823(1)	2.2(2)
0(5)	0.2201(2)	0.7844(1)	0.2296(1)	2.3(2)
C(6)	0.2308(2)	0.8250(1)	0.3164(1)	2.3(2)
C(7a)	0.4820(2)	0.8101(1)	0.2675(1)	2.1(1)
С(7Б)	0.4836(2)	0.7875(1)	0.1634(1)	2.2(1)
C(8)	0.5131(2)	0.5976(1)	0.3524(1)	2.7(2)
C(Y)	0,7383(2)	0.4661(1)	8.2175(2)	3.8(2)
C(10)	0.5793(2)	0.5813(2)	0.0637(1)	3.1(2)
0(11)	0.5442(2)	0.9018(1)	0.2501(1)	2.1(1)
C(12)	0.6327(2)	0.9353(1)	0.1603(1)	2.4(2)
C(13)	0.6835(2)	1.0221(1)	0.1436(1)	2.7(2)
C(14)	0.6423(2)	1.0790(1)	0.2159(1)	2.6(2)
C(15)	0.5575(2)	1.0467(1)	0.3074(1)	2.5(2)
C(16)	0.5102(2)	0.9587(1)	0.3238(1)	2.4(2)
C(17)	0.6394(2)	0.6690(1)	0.4388(1)	2.4(2)
C(18)	0.7872(2)	0.6309(2)	0.4574(1)	3.0(2)
0(19)	0.8330(2)	0.6132(2)	0.5547(1)	3.4(2)
C(20)	0.7297(2)	0.6344(1)	0.6355(1)	2.9(2)
C(21)	0.5810(2)	0.6/34(1)	0.6198(1)	2,9(2)
C(22)	0.53/1(2)	0.8904(1)	0.5224(1)	2.8(2)
0(23)	0.1020(2)	0.8498(1)	0.3954(1)	2.3(2)
L(24)	0.1066(2)	0.7680(2)	0.49/0(2)	3.8(2)
L(25)	-0.0038(2)	0.7897(2)	0.5/38(2)	4,4(3)
0(28)	-0.1238(2)	0.8919(2)	0.5498(2)	3.9(3)
	-0.1297(2)	0.9733(2)	0.4304(2)	4.3(3)
C(28)	-0.0103(2)	0.7000(2)	0.3/30(1)	3.7(2)
	0./9/1(2)	0.7200(1)	-9 9494(1)	2.1(2)
C(30)	0.0001(2)	9 9295(2)	-9 1271(1)	3 7(2)
0(32)	0.0419(2)	9 7499(2)	-9 1154(1)	3 7(2)
C(32)	0.0953(0)	A 4924(2)	-9 9174(2)	4 9(3)
C(34)	0.9998(2)	0.6681(2)	B. 0497(1)	3.4(2)
0(35)	N.1288(2)	N.8914(2)	0.1402(1)	3.5(2)
0(36)	0.1382(2)	0.7003(2)	0.2722(2)	2,9(2)
0.00/	••••••••••••••••••••••••••••••••••••••	51, 530(L)		//1/

J. F. thanks the Alexander-von-Humboldt-Stiftung for support. Thanks are due to Dr. H.-J. Hecht, University of Würzburg, for carrying out the first X-ray experiment, and to the Beilstein-Institut, Frankfurt, for helping in the nomenclature of 4.

Experimental

1,7a-Bis(4-chlorophenyl)-3,3,5,5-tetramethyl-2a,6-diphenyl-2,2a,3,4,4a,5,7a,7b-octahydro-1H-2,7-diaza-1,4-methanocyclopenta[cd]indene (4): 1.0 g of 1 was heated at 110°C for 10 h. After cooling to room temp., 15 ml of diethyl ether was added, and the precipitate was filtered and washed with diethyl ether to yield 0.2 g (23%) of 4, m.p. 259-261 °C (dec.). The ¹H-NMR spectrum

 $(CDCl_3)$ of the residue obtained by evaporation of the ether solutions showed the typical signals of 3, which was not further characterized. 0.1 g of 4 was recrystallized from 25 ml of acetone to give colorless crystals, m. p. 262-263 °C, suitable for X-ray analysis. -¹H-NMR (CDCl₃): $\delta = 0.80$, 1.18, 1.27, 1.36 (each s, 12H), 1.80 - 2.30 (m, 5H), 3.29 (d, J = 7 Hz, 1H), 6.71 (d, J = 9 Hz, 2H), 6.93 (d, J = 9 Hz, 2H), 7.00 - 7.20 (m, 4H), 7.27 - 7.69 (m, 10H).MS (70 eV, DI, 180°C): m/z (%) = 592/590 (75/100) [M⁺], 298/ 296 (32/97) [C₁₉H₁₉ClN], 282/280 (28/80) [C₁₈H₁₅ClN], 131, 91.

> $C_{38}H_{36}Cl_2N_2$ (591.6) Calcd. C 77.15 H 6.13 N 4.74 Found C 76.53 H 6.07 N 4.65

X-ray Diffraction Analysis of 4: C₃₈H₃₆Cl₂N₂, molecular mass 591.6; crystal dimensions 0.07, 0.20, 0.40 mm. 4 crystallizes in the triclinic space group $P\overline{1}$ with the lattice parameters a = 995.2(1), $b = 1350.1(3), c = 1354.9(1) \text{ pm}; \alpha = 66.96(1), \beta = 78.28(1), \gamma =$ $65.41(1)^{\circ}$; $V = 1521.6(4) \cdot 10^{6} \text{ pm}^{3}$; $d_{c} = 1.29 \text{ gcm}^{-3}$; Z = 2. An Enraf-Nonius CAD-4 diffractometer was used with monochromatic CuK_{α} radiation; ω -2 Θ -Scan in the range of $3.0^{\circ} < 2\Theta < 150^{\circ}$, at 296(1) K. Out of 5372 unique reflections, 4144 with $F^2 > 3.0\sigma(F^2)$ were taken as observed. Empirical absorption correction ($\mu = 21.6$ cm^{-1}) was applied by the use of the DIFABS program⁵). Relative transmission coefficients ranged from 0.713 to 1.367. The structure was solved by direct methods (MULTAN 82). H atoms were entered in calculated positions. Anisotropic full-matrix least-squares treatment of the non-hydrogen atoms resulted in R = 0.046 ($R_w =$ 0.047, $R_{\rm tot} = 0.066$) for 379 parameters refined. Max. $\Delta/\sigma = 0.038$; highest peak in the final difference map $0.24(4) \cdot 10^{-6} \text{ e/pm}^3$. Further details of the crystal structure investigation are available on request from the Fachinformationszentrum Energie, Physik, Mathematik GmbH, D-7514 Eggenstein-Leopoldshafen 2, on quoting the depository number CSD-53146, the names of the authors, and the journal citation.

CAS Registry Numbers

1: 62045-65-2 / 3: 64329-75-5 / 4: 115119-01-2

- ¹⁾ Part 11: S. Jendrzejewski, W. Steglich, Chem. Ber. 114 (1981) 1337.
- ^{1357.}
 ²¹ N. Engel, J. Fischer, W. Steglich, J. Chem. Res. (S) 1977, 162.
 ³¹ J. Fischer, W. Steglich, Angew. Chem. 91 (1979) 168; Angew. Chem., Int. Ed. Engl. 18 (1979) 167.
 ⁴¹ W. Steglich, Chem. T. Usbargh, T. Zinreg, Chem., Int. Ed. Engl. 18 (1979) 167.
- 4) K. Hasenrück, H.-D. Martin, B. Mayer, T. Urbanek, T. Zinres, R. Walsh, H.-D. Beckhaus, Chem. Ber. 120 (1987) 177
- ⁵⁾ N. Walker, D. Stuart, Acta Crystallogr., Sect. A, 39 (1983) 158. [108/88]